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Templates & GUI

• Use automatic training tools 
  and GUI templates [1,2] for: 
  - crystal & amorphous bulk materials  
  - interfaces 
  - molecules 
• Inspect automatically generated 
  training configurations using GUI 
• Validate generated ML FFs by 
  comparing calculated values with 
  available experimental and DFT data: 
  - RDF and ADF 
  - Elastic constants 
  - Neutron scattering factor 
  - Chemical composition profile 
  - X-ray scattering

QuantumATK Advantages

• Automated user-friendly generation
  of training data, tailored for specific 
  applications 
  - Ensures minimal amount of
    training data and time needed  
  - No computationally expensive
    ab-initio MD is needed in most cases 
  - Provides good quality accurate ML
    FFs for complex systems 
• Single interface for different  
  simulation engines 
  - Easily switch between training
    with DFT-LCAO and DFT-PW 
 - Combine ML FFs with conventional 
   FFs, DFT or Semi-empirical   
   calculators

Automatic Workflows
 
Basic workflow  
• For crystalline materials  
• Automatically generate training 
  configurations, compute training 
  data  with DFT, and perform machine 
  learning, i.e., fitting to the training data 

Advanced active learning workflow 
• For amorphous systems, interfaces, 
  systems at high T, surface processes 
• Improve initial ML FFs generated 
  with the basic workflow by actively 
  adding training configurations    
  and DFT training data during MD 
  simulations

Machine-Learned Force Fields (ML FFs) provide near-ab initio accuracy for large realistic system sizes and dynamical simulation 
time-scales greatly exceeding those accessible to Density Functional Theory (DFT). Use ML FFs in QuantumATK to generate realistic 
complex structures of novel crystal and amorphous materials, alloys, interfaces, and multilayer stacks, simulate thermal and 
mechanical properties, diffusion and surface processes. Benefit from the pre-trained ML FF library or develop new ML FFs using 
automated and efficient training and simulation workflows. Employ ML FFs for molecular dynamics (MD), force bias Monte Carlo, 
nudged elastic band (NEB), and geometry optimization simulations.

• 1000 to 10,000x faster than DFT, thus enabling dynam-
ical modeling of realistic novel and complex systems 
containing even 100,000+ atoms, instead of small model 
100-atom systems.

• Provide near-ab initio accuracy for multi-element materi-
als, heterogeneous systems like interfaces, and systems 
far from equilibrium, including amorphous materials, 
phase transitions, or chemical reactions.

• Often easier to develop than conventional FFs using the 
automated workflows available in QuantumATK. Accu-
rate conventional FFs for such complex materials would 
require much more extensive and complicated develop-
ment processes.

ML FFs for Dynamical Simulations of Large-Scale Realistic Systems

Automated Efficient Generation of ML FFs

https://www.synopsys.com/silicon/quantumatk/atomistic-simulation-products/machine-learned-force-fields.html
https://docs.quantumatk.com/tutorials/mtp_hfo2/mtp_hfo2.html
https://docs.quantumatk.com/manual/Types/CrystalInterfaceTrainingParameters/CrystalInterfaceTrainingParameters.html
https://docs.quantumatk.com/manual/Types/MolecularConfigurationsParameters/MolecularConfigurationsParameters.html
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Application Examples of Machine-Learned Force Fields

Structure Generation of Amorphous Materials: Generate amorphous structures for PCRAM, 
ReRAM and FeRAM novel memories, solar cell and other  applications. In this example, 80 ps 
ML FF - MD generated am-SiO2 structure of 600 atoms in 11 minutes, whereas it took 10 days 
to generate 72-atom structure with DFT-MD on 16 cores. Structural parameters obtained with 
ML FFs are in a good agreement with DFT and experimental results. 

Structure Generation of Interfaces and Multilayer Stacks: Build and optimize complex 
crystalline and amorphous interfaces and multilayer stack structures for semiconductor 
development applications, such as high-k metal gate (HKMG) (using Multilayer builder GUI) and 
MRAM magnetic tunnel junction engineering. This example shows a generated structure of 
nearly defect-free c-Si|am-SiO2|am-HfO2|am-Ti2N HKMG stack.

Structure Generation of Glassy Amorphous Materials: Generate glassy amorphous materials 
with impurities for optoelectronic applications. In this example, ML FF – MD is used to simulate 
a large- scale 120,000 atom size sodium silicate glass with Na impurities, (Na2O)2(SiO2)40000 at 
2500 K.

Crystallization & Amorphization Processes: Study ns-long crystallization and amorphization 
processes with ML FF - MD in large-scale systems for, e.g., PCRAM novel memory applications. 
This example depicts crystallization of 2520-atom phase change alloy material Ge2Sb2Te5.

Thermal Property Simulations: Simulate thermal conductance using ML FFs with ns-long 
reverse non-equilibrium MD (RNEMD) simulations for developing PCRAM and evaluating self-
heating and heat dissipation in devices. Examples include simulating thermal conductance in 
bulk Ge2Sb2Te5 (2300 atoms), Ge2Sb2Te5/Si (882 atoms) and Si/GaAs (864 atoms) interfaces, 
monolayer MoS2 (108,000 atoms). Calculated values are in a good agreement with experimental 
and DFT results where available.

Surface Process Modeling: Simulate thermal ALD and ALE processes using specifically trained 
ML FFs with MD. This example shows simulation of thermal ALD process: HfCl4 deposition on 
HfO2 surface of 4.5 nm2 area. Precursor adsorption energies are consistent with DFT results. 
Obtained sticking coefficient and coverage values can be used as parameters for feature scale 
models to optimize yield of ALD.

Built-in Library of Ready-to-Use Machine-Learned Force Fields
 ► QuantumATK offers Moment Tensor Potentials (MTPs) 

ML FFs implemented by the QuantumATK team in-
house. 

 ► MTPs provide high robust accuracy with lower 
computational cost compared to other ML FFs [3,4].  

 ► Benefit from the pre-trained ready-to-use high-quality 
MTP library [5,6] or develop MTPs for new materials, 
interfaces and surface processes by using automatic 
generation workflows.

Tutorial and video on automatic ML FF training tools and GUI templates
[1] Tutorial: https://docs.quantumatk.com/tutorials/mtp_hfo2/mtp_hfo2.html  [2] Video: https://www.youtube.com/watch?v=6BrrVotzjnc       
[3] A. V. Shapeev. Moment tensor potentials: a class of systematically improvable interatomic potentials. Multiscale Model. & Simul. 14, 1153 (2016). 
[4] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi, A. V. Shapeev, A. P. Thompson, M. A. Wood, and S. Ping Ong. Performance and cost 
     assessment of machine learning interatomic potentials. J. Phys. Chem. A 124, 731(2020).
[5] ML FF features: https://www.synopsys.com/silicon/quantumatk/resources/feature-list.html#MLforcefield  
[6] Materials in ML FF library: https://docs.quantumatk.com/manual/ForceField.html#pretrained-moment-tensor-potential-mtp-parameter-sets
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