
What is Fuzzing:
The Poet, the Courier,
and the Oracle

WHITEPAPER

TABLE OF CONTENTS

Summary

1. Fuzzing in the context of software testing

 1.1 Positive and negative testing

 1.2 Software vulnerabilities

 1.3 Black, white, and gray box testing

 1.4 Static and dynamic testing

 1.5 What is fuzzing?

 1.6 Zooming out: vulnerability management

 1.7 Zooming all the way out: risk management

2. The Poet

 2.1 Random

 2.2 Template

 2.3 Generational

 2.4 Evolutionary

3. The Courier

 3.1 Network protocol fuzzing

 3.2 File fuzzing

 3.3 API fuzzing

 3.4 User interface fuzzing

4. The Oracle

 4.1 Types of failures

 4.2 Traditional Oracles

 4.2.1 Eyeballs

 4.2.2 Valid Case or functional

 4.2.3 Resource monitoring

 4.3 Advanced oracles

 4.3.1 External

 4.3.2 Dynamic binary

 4.3.3 Source code instrumentation

 4.3.4 Functional and behavioral checks

5. Wrap up

Page 3

Page 3

Page 3

Page 4

Page 4

Page 5

Page 5

Page 6

Page 6

Page 6

Page 7

Page 7

Page 8

Page 8

Page 8

Page 9

Page 9

Page 9

Page 9

Page 10

Page 10

Page 10

Page 11

Page 11

Page 11

Page 12

Page 12

Page 12

Page 13

Page 13

Page 14

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 3

Summary
Fuzzing is well established as an excellent technique for locating vulnerabilities in software. The basic premise
is to deliver intentionally malformed input to target software and detect failure. A complete fuzzer has three
components. A poet creates the malformed inputs or test cases. A courier delivers test cases to the target
software. Finally, an oracle detects if a failure has occurred in the target. Fuzzing is a crucial tool in software
vulnerability management, both for organizations that build software as well as organizations that use software.

1. Fuzzing in the context of software
Fuzz testing, or fuzzing, is a type of software testing in which deliberately malformed or unexpected inputs are
delivered to target software to see if failure occurs.

In this paper, we use software to mean anything that is compiled from source code into executable code that
runs on some sort of processor, including operating systems, desktop applications, server applications, mobile
applications, embedded system firmware, systems on a chip, and more.

When a piece of software fails accidentally due to unexpected or malformed input, it is a robustness problem.

In addition, a diverse cast of miscreants actively seeks to make software fail by delivering unexpected or
malformed inputs. When software fails due to deliberate attack, it is a security problem.

A software failure that causes harm or death to humans is a safety problem.

Robustness, security, and safety are three faces of the same hobgoblin, software bugs. A bug is a mistake made
by a developer; under the right conditions, the bug is triggered and the software does something it was not
supposed to do. Improving robustness, security, and safety is a matter of finding and fixing bugs.

1.1. Positive and negative testing
Historically, software testing has focused on functionality. Does the software work the way it’s supposed to
work? In functional testing, a type of positive testing, test developers create code and frameworks that deliver
valid inputs to the target software and check for the correct output. For example, if we press the big red button
(deliver an input), does the software turn on the city’s power grid (correct output)?

In a traditional software development methodology, the software design is a list of requirements for the target
software. The test development team has a fairly straightforward task of translating the design requirements into
test cases to verify that the software is performing as described in the specification.

Functional testing is certainly important—the target software must behave as expected when presented with
valid inputs. However, software that is only subjected to positive testing will fail easily when released into a
chaotic and hostile world.

The real world is a mess. It is full of unexpected conditions and badly formed inputs. Software must be able to
deal with other software and people who will supply poorly formed inputs, perform actions in unexpected order,
and generally misuse the software. Negative testing is the process of sending incorrect or unexpected inputs to
software and checking for failure.

Be aware that different negative test tools will produce different results for the same test target. Each tool works
differently and will test different kinds of badly formed inputs on the target software.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 4

1.2. Software vulnerabilities
Bugs are also known as code vulnerabilities. In the world of software, vulnerabilities come in three flavors:

1. Design vulnerabilities are problems with the design of the software itself. For example, a banking website
that does not require users to authenticate has a serious design vulnerability. In general, design vulnerabilities
must be hunted and killed by humans—automated tools simply do not exist at this level.

2. Configuration vulnerabilities occur when the setup of a piece of software has exposed a vulnerability. For
example, deploying a database with default (factory-installed) administration credentials is a configuration
vulnerability. While there are some automated tools that can assist in locating configuration vulnerabilities,
much of the seek-and-destroy work must be performed by humans.

3. Code vulnerabilities are bugs. Positive testing, with manually coded test cases, can be used to find and fix
bugs related to functionality. Negative testing, which can be heavily automated, can be used to improve the
robustness and security of the software.

In addition, software vulnerabilities are unknown, zero-day, or known.

1. An unknown vulnerability is dormant. It has not been discovered by anyone.

2. A zero-day vulnerability has been unveiled by one person or a team or organization. A zero-day vulnerability is
not published. The builder and users of the affected software are most likely unaware of the vulnerability. No
fixes or countermeasures are available.

3. A known vulnerability is published. Responsible vendors release new versions or patches for their software to
address known vulnerabilities. While fuzzing is typically used for locating unknown code vulnerabilities, it can
also trigger vulnerabilities caused by poor design or configuration.

1.3. Black, white, and gray box testing
In black box testing, the test tool does not have any knowledge of the internals of the target. The tool interacts
with the target solely through external interfaces.

By contrast, a white box tool makes use of the target’s source code to search for vulnerabilities. White box testing
encompasses static techniques, such as source code scanning as well as dynamic testing, in which the source
code has been instrumented and rebuilt for better target monitoring.

Gray box tools combine black box and white box techniques. These tools interact with the target through its
external interfaces, but also make use of the source code for additional insight.

Fuzzing can be black box or gray box testing. This flexibility makes fuzzing an extremely useful tool for testing
software, regardless of the availability of source code or detailed internal information. As a black box technique,
fuzzing is useful to anyone who wants to understand the real life robustness and reliability of the systems they
are operating or planning to deploy. It also is the reason why fuzzing is the number one technique used by black
hat operatives and hackers to find software vulnerabilities.

Even without source code, the ability to more closely monitor the vitals of the target software improves the
quality of the testing. Log files, process information, and resource usage provide valuable information that can be
used during fuzzing to understand how the anomalous inputs are affecting the target system.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 5

If the source code is available, debugger tooling and other instrumentation can be used to make fuzzing a gray
box technique. This improves the accuracy of the tests and allows more rapid resolution of located defects.

1.4. Static and dynamic testing
Vulnerabilities are pursued using both static and dynamic testing techniques. A mature development process
should leverage a variety of static and dynamic techniques in order to drive risk down to the desired level. This
section highlights common static and dynamic software testing techniques, one of which is fuzzing.

Static techniques can be used without actually running the target software. They include the following:

1. Source code reviews are carried out by developers. They read
through the source code and look for unknown vulnerabilities.
While this can be effective, it is very slow and success depends
heavily upon the skill of the reviewers.

2. Automated source code analysis tools scan the target source
code and report on patterns of programming that might be
vulnerabilities. A human developer must review the results of this
scan.

3. Static binary analysis tools scan compiled (executable) code and report on contained libraries and
associated known vulnerabilities.

Dynamic test techniques are performed on the target software as it is running and include the following:

1. Load testing delivers large and numerous inputs to the target software to see if it fails due to heavy volume.

2. Interoperability testing validates that two implementations are able to converse using a specified protocol,
language, or notation.

3. Conformance testing validates that tested system and its behavior conforms to relevant specifications.

4. Fuzzing delivers anomalous inputs to software to see if failure occurs. It is an excellent method for locating
unknown vulnerabilities.

1.5. What is fuzzing?
Fuzzing is the process of sending intentionally malformed inputs to a piece of software to see if it fails. Each
malformed input is a test case. Failure indicates a found bug, which can then be fixed to improve the robustness
and security of the target software.

A fuzzer is a piece of software that tests a piece of target software. A proper fuzzer consists of three
components:

1. The poet is responsible for creating the test cases. The poet is also known as the test case generator, test
case engine, or anomalizer.

2. The courier sends the test cases to the target. The courier is also known as the injector, delivery mechanism,
or test driver.

A mature development
process should leverage
a variety of static and
dynamic techniques in
order to drive risk down to
the desired level.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 6

3. The oracle determines if the target has failed. Not all fuzzers implement all three parts, but to harness the
power of automated fuzzing, all parts should be present.

When using fuzzers to improve robustness and security, the end goal is not just finding bugs, but fixing bugs.
A useful fuzzer must keep records, produce actionable reports, and provide a smooth remediation process to
reproduce failures so that they can be fixed

1.6. Zooming out: vulnerability management
A fuzzer will not solve all of your problems. It must be part of an arsenal of tools and part of a process for
software vulnerability management. Other tools that you might also use for software vulnerability management
are as follows:

• Manual security reviews

• Reverse engineering

• Static binary code analysis

• Known vulnerability scanning

• Patch management tools

• Fuzz testing

1.7. Zooming all the way out: risk management
Software vulnerability management is part of a larger picture—risk management. An organization seeking to
lower, or at least understand, its overall risk will use software vulnerability management in conjunction with other
risk management techniques. Fuzzing is a powerful technique for assessing the robustness and security of
software, which is directly related to risk.

Now that you understand who uses fuzzing, how fuzzing relates to other software testing techniques, and where
fuzzing is used in the world of vulnerability management, we will move ahead by discussing techniques and
algorithms used in fuzzing.

2. The poet
Fuzzing is an infinite space problem. For any piece of software, the set of invalid inputs is unbounded. An
effective poet must be clever enough to craft test cases that are most likely to trigger bugs in the target software.
In essence, this comes down to having a poet that creates test cases that are close to what the target expects,
but malformed in some way.

The method of generating test cases has a profound effect on the quality of the test case material.

The end goal is not just finding bugs, but fixing bugs.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 7

2.1. Random
The simplest yet least effective fuzzing method is random fuzzing.

The poet simply uses random data as test cases.

Random fuzzing is usually ineffective because the test cases are nothing like valid input. The target examines
and quickly rejects the test cases. For the most part, the test cases fail to penetrate into the target code.

In theory, a random poet will eventually produce a test case that resembles valid input. However, even with
relatively short valid inputs, the probabilities of producing a mostly correct test case are very low, which makes
the time required to wait for such a test case very long.

2.2. Template
A template poet introduces anomalies into valid inputs to create test cases. In general, template test cases are
much more effective than random test cases because they are mostly correct. The target software will process
test cases and the anomalies exercise the target’s ability to handle unexpected or malformed inputs in a safe,
robust, and secure manner.

Getting started with template fuzzing is usually quick, as suitable template files or network captures are often
readily available. Also, a template poet is easily adjustable for target software that uses unexpected or non-
standard elements in its input.

However, template poets have significant limitations. First, for protocols that include some kind of integrity
validation, like message checksums, testing effectiveness will be limited. The template poet will introduce
anomalies, but does not know to update checksums. The template poet can create millions of test cases for
the target, but if the integrity checks don’t pass, the target software will not bother trying to parse the rest of the
messages and the corresponding parsing code remains untested.

Second, for protocols that include stateful features, a template poet has the same kind of problem. The template
poet does not understand the semantics of the protocol and will blindly replay its anomalized valid messages.
It cannot correctly set stateful features like session identifiers, so its effectiveness in testing such protocols is
limited.

Finally, for protocols that are partially or completely encrypted, a
template poet cannot be used directly. If unencrypted valid messages
can be obtained, the template poet can create test cases that can be
subsequently piped through an external encryption mechanism for
delivery to the target.

Template fuzzing is often limited by the availability of good templates.
The quality of the used templates dictates the quality of the results.

Modern template fuzzers can overcome many of the aforementioned limitations. For example, the Synopsys
Traffic Capture Fuzzer (Defensics TCF) is a template fuzzer that creates test cases based on a packet capture
file (pcap). TCF consults a traffic analyzer to see if the packet capture file can be dissected. If it can, TCF uses the
information supplied by the protocol dissector, specifically message structure and field boundary information, to
create a better-focused set of test cases resulting in more effective testing. In addition, TCF is able to correctly
calculate length and checksum fields for many protocols, greatly increasing its effectiveness.

The quality of the used
templates dictates the
quality of the results.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 8

The Synopsys Universal Fuzzer (Defensics UF or DUF) is another example of an enhanced template fuzzer. DUF
uses a collection of valid files (a corpus) as the basis of test cases. DUF analyzes the valid files to infer their
structure and create high-quality test cases for the target.

Corpus distillation is a method for overcoming some of the limitations of template-based fuzzing related to
quality of the templates. Corpus distillation finds and selects the templates that will be used to create test cases.
The basic technique is to select valid cases that best represent the protocol or file format overall. For example,
in a protocol with multiple message types, the templates selected should include all message types. For a file
format with optional parts, good templates should include all optional features.

2.3. Generational
A generational poet understands the protocol, file format, or API that it tests. This means it knows every possible
structure and message type, all the fields in every message, and rules about how messages are exchanged.
Because the generational poet knows all the rules, it can systematically break all the rules.

Furthermore, because the generational fuzzer has full knowledge of the protocol or input type, it can correctly
handle the things that confound a template poet. A generational fuzzer can keep track of stateful features like
session identifiers and it can correctly set values like checksums that can be a limiting factor for other fuzzing
techniques.

A generational poet creates high-quality test material that looks legitimate to the target. For protocols with
multiple-message conversations, this allows the generational fuzzer to exchange several valid messages with a
target, driving it to a certain state, before delivering the anomalized test case.

The Synopsys fuzzing platform has more than 250 generational fuzzers for a wide variety of network protocols
and file formats.

2.4. Evolutionary
An evolutionary poet uses feedback about the target’s behavior to influence how subsequent test cases are
created. Some measurement related to the target’s response to test cases is used to score test cases that have
already been sent to the target. The poet creates more test cases based on the highest-scoring previous test
cases.

A “pure” evolutionary fuzzer is a black box fuzzer. Supplied with a destination address and port, the evolutionary
fuzzer sends increasingly relevant inputs to the target, based solely on the target’s response. The Synopsys
fuzzer uses evolutionary methods to shape its test material. An interoperability scan discovers which features
are implemented in a target, then configures the test suite so that only the implemented features are tested.

3. The courier
The courier is responsible for delivering the test cases created by the poet to the target software. Fuzzing
encompasses a variety of disciplines, each with their own challenges.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 9

3.1. Network protocol fuzzing
One common application for fuzzing is network protocol testing. A protocol is a set of rules for how different
pieces of software communicate over a network. The code that interprets protocol messages is an attack vector.
Fuzzing is an excellent technique for locating unknown vulnerabilities in protocol-handling code.

Testing network software is further divided into fuzzing different roles and types of components. Many protocols
include concepts of client and server, where the client initiates a connection and the server responds.

In server testing, the job of the courier is straightforward. The target software listens for incoming connections.
All the courier has to do is make a connection to the target server and send a test case.

Client testing is often more complicated. The courier must act like the server, listening for incoming connections.
Each time the target client makes a connection to the courier, the courier responds with a test case. Usually, the
client needs to be encouraged to repeatedly make connections to the courier so that the courier can continue to
deliver test cases.

End-to-end or pass-through testing is another variety. Some network components are not directly addressable,
but they do examine network traffic as it passes through. A good example is a firewall with network address
translation (NAT) and application layer gateways (ALG) to support voice over IP (VoIP) interactions. To test
such a component, the fuzzer is placed on one side and some terminating software is placed on the far side.
The fuzzer courier delivers test cases through the target to the terminator. The terminator needs to respond
appropriately to the courier and needs to be robust enough to handle the test case material without failing.

3.2. File fuzzing
In file fuzzing, intentionally malformed files are delivered to a piece of software. The courier’s job here is hard
to define, as different pieces of software do not consume files in any standardized way. Sometimes the best
method is to write a custom wrapper or code that facilitates effectively feeding the test cases to the target.

The Synopsys file fuzzers offer a variety of open-ended delivery options. Test cases can be written to the
file system for later delivery, they can be sent over network connections, they can be delivered to specific
commands, or they can be served up by a built-in HTTP Server.

3.3. API fuzzing
API fuzzing is a different animal in which the various methods or functions of an Application Programming
Interface (API) are tested to see how they respond to malformed input. The courier in this case must create
source code from the test cases, compile (if appropriate) and run the code, and then see if a failure occurs.

Note that remote procedure call APIs such as DCERPC, SunRPC, and Java RMI fall under network protocol
fuzzing. Similarly, XML/ SOAP and more modern RESTful/JSON based remote APIs should be considered
protocol fuzzing.

3.4. User interface fuzzing
Many pieces of software offer a user interface (UI) so that humans can see information and provide input.
Input can be provided using a keyboard, a keypad, a mouse, or some other method. UI fuzzing is the process of

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 10

providing unexpected or malformed inputs to the UI. For example, in an application on a traditional desktop, a
fuzzer might deliver mouse clicks on opposite sides of the screen at nearly the same time.

Most modern operating systems and programming environments provide a programmatic way to deliver input
events so that such testing can be accomplished entirely in software. However, for some smaller devices, the
only way to fuzz user input is to use a mechanical device capable of pressing buttons.

4. The oracle
The oracle determines whether a test case passes or fails. It checks the target to see if a failure has occurred.
Knowing when a failure has occurred is crucial to the success of fuzzing. It doesn’t do any good to cause failure
in your target software if you can’t make it fail reproducibly so that it can be fixed.

This section describes several approaches to the oracle challenge. The good news is that multiple approaches
can be combined. Using multiple methods to check for target failure increases the likelihood of detecting failures
when they occur.

4.1. Types of failures
Software fails when it behaves in a way its creators did not intend or anticipate. In traditionally applied fuzzing,
failure modes come in four categories:

• Crashes

• Endless loops

• Resource leaks or shortages

• Unexpected behavior

These failure modes vary based on the type of the system or software being tested, the underlying operating
system, and more. A crash might be just a crash, or it might lead to a denial of service of the target, degraded
performance, information leakage, security compromise, or something else. The consequences depend on the
purpose and function of the software, where and when it is operated, and so on.

The job of the oracle is to detect failure. With such a wide range of failure modes, this is not an easy job!

4.2. Traditional oracles
The field of fuzzing continues evolving rapidly and one current area of innovation is the oracle. This section
describes “traditional” approaches to monitoring a target during fuzz testing.

Using multiple methods to check for target failure increases the likelihood
of detecting failures when they occur.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 11

4.2.1. Eyeballs
Even in an age of heavily automated testing, human observation still has high value and should not be
underestimated. A human who understands the target software can observe its functionality and monitor vital
signs such as log files and resource usage, noticing things and drawing conclusions in a way that is very hard to
automate. Of course, human observation is expensive and does not scale well to dozens of targets or weeks of
testing.

For test setup and initial testing, human observation is an excellent oracle technique.

4.2.2. Valid case or functional
A valid case oracle checks the health of the target by sending valid input and looking for a valid and timely
functional response. This can be done after the courier delivers each test case. If a test case causes a failure that
makes the target unable to respond to valid input, the oracle will find out right away.

A valid case oracle has the following advantages:

• It is simple and easy to automate.

• It is a black box technique; it can be used without knowing anything about the source code or internal
workings of the target.

• It is focused. For example, when fuzzing HTTP on a Web server with multiple open ports and protocols,
using a valid case oracle with valid HTTP messages is a good way to make sure that the HTTP server
process is still running. A valid case oracle will let you know if there is a crash or freeze in your target.
However, the valid case oracle cannot “see” more subtle signs of trouble such as memory leaks, unusual
resource consumption, assertion failures, and more.

The Synopsys fuzz testing tool includes extensive support for valid case oracles in its test suites.

4.2.3. Resource monitoring
Another useful technique that can be automated and generalized for multiple types of targets is resource
monitoring. As fuzz test cases are presented to the target, the oracle examines the usage of memory, disk space,
processing power, and other resources to look for anything out of the ordinary.

For targets that support Simple Network Management Protocol (SNMP), an oracle can retrieve SNMP values
related to resource usage and other vital signs during fuzzing. Such an oracle allows straightforward use for any
target supporting SNMP.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 12

The Synopsys fuzzer includes support both for browsing and selecting SNMP values as well as built-in
automated support for using an SNMP oracle. The diagram (refer to Figure 1) shows a graph of resource
consumption during fuzz testing.

4.3. Advanced oracles
Better monitoring of a target results in more accurate detection of vulnerabilities and quicker resolution. This
section lists some powerful approaches to the oracle challenge in fuzzing.

4.3.1. External
Because software targets come in all shapes and sizes, it’s impossible to make a generalized oracle that works
for everything. The valid case oracle works well because it uses the same interface that’s being tested.

Target-specific oracles usually have to be created on a case-by-case basis. When this happens, it’s important
that your fuzzer makes it easy to integrate the oracle you’ve created.

The Synopsys fuzz testing tool provides a mechanism called external instrumentation in which it will call a
user-supplied script to determine if a failure has occurred on the target. This mechanism is invoked after every
test case so that when a failure occurs, the test case that caused it can be identified and run again. External
instrumentation scripts can examine log files, monitor resource usage, check on processes, or do anything else
that can be scripted.

4.3.2. Dynamic binary
One of the strengths of fuzzing is that it is a black box technique—you can fuzz software even when you don’t
have the source code.

Even without source code, some advanced methods are available for examining the target software as it’s
running.

• Tools like strace, for example, can show how the target software interacts with the underlying operating
system.

• Dynamic Binary Instrumentation (DBI) is a promising technique in which executable code can be
modified on the fly to allow detailed examination of its workings without the need for source code.

Figure 1: Resource Monitoring

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 13

• Microsoft’s PageHeap is a tool that enables heap allocation monitoring for any executable code.

4.3.3. Source code instrumentation
If you do have the source code available, other advanced oracular techniques are available to detect failures.
Depending on your fuzzer and the technique you’re using, you might be able to integrate these oracles into the
fuzzing process to detect failures precisely.

• If you build the target software with debugging symbols, you’ll be able to run the target in a debugger
such as gdb. Among other things, this will show you when assertions fail, which might or might not
indicate some kind of failure. Furthermore, errors that are hidden by poor use of try-catch structures can
be revealed when running software in a debugger.

• Similarly, target software compiled with debugging symbols can be run with valgrind’s memcheck tool to
analyze memory use and check for errors.

• Target software built with AddressSanitizer (ASan) will quickly expose memory usage errors.

• Other types of target instrumentation might also be available.

4.3.4. Functional and behavioral checks
Certain attack vectors can be examined during fuzz testing to detect functional failures. For example, while
fuzzing TLS messages, it’s an obvious functional failure if the fuzzer supplies bad authentication credentials, but
the target allows the fuzzer access anyhow.

Depending on the attack vector, a variety of functional checks can be implemented, including authentication
bypass, code injection, message amplification, and more.

For functional checks to be possible the fuzzer must already have a complete model and grammar of the tested
protocol or file format, which means the fuzzer must be generational.

The Defensics team, now part of Synospys, discovered Heartbleed while adding such functional checks (called
SafeGuard) to its TLS fuzzer. The following screenshot (Refer to Figure 2) shows a section of a Defensics test log
in which the Heartbleed vulnerability has been detected in target software.

Figure 2: Functional and Behavioral Checks

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 14

5. Wrap up
Fuzzing is an excellent technique for locating vulnerabilities in software. The basic premise is to deliver
intentionally malformed input to target software and detect failure. A complete fuzzer has three components. A
poet creates the malformed inputs or test cases. A courier delivers test cases to the target software. Finally, an
oracle detects target failures.

Different fuzzing techniques have a significant effect on fuzzing effectiveness. For the most part, the poet is
more effective when it is able to create test cases that are almost correct, but anomalous in some way. Different
oracle techniques provide varying levels of failure detection capability. Multiple oracle techniques can be used
together to help detect the maximum number of failures.

Fuzzing is a crucial tool in software vulnerability management, both for organizations that create software as
well as organizations that use software. Fuzzing must be deployed as part of a process. Builders use fuzzing as
an integral part of a Secure Development Life Cycle, while buyers use fuzzing as a crucial tool in verification and
validation. Financially speaking, fuzzing saves money simply because it is much less expensive to fix bugs earlier
rather than later. Bugs that are fixed before deployment or product release are no big deal. Bugs that are located
and possibly exploited in production scenarios can be hugely expensive.

In the broader context of risk management, finding and fixing bugs proactively with fuzzing provides protection
against other types of damage. If a bug in your product leads to a catastrophic failure or a massive data breach,
your reputation might not recover and your legal liability could be insurmountable. If you provide a service, such
as healthcare, power, communications, or another critical infrastructure, bugs in the products you’re using could
lead to human harm or environmental damage.

Finding and fixing bugs saves money, protects your customers and your reputation, and in many cases, saves
lives.

Fuzzing saves money simply because it is much less expensive to fix
bugs earlier rather than later.

Explore how the Synopsys Fuzz Testing tool can
 help you build more secure software.

Learn more.

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://www.synopsys.com/fuzz-test

© 2017 Synopsys, Inc. | www.synopsys.com | a j b r 15

THE SYNOPSYS DIFFERENCE

Synopsys offers the most comprehensive solution for integrating security
and quality into your SDLC and supply chain. Whether you’re well-versed in
software security or just starting out, we provide the tools you need to ensure
the integrity of the applications that power your business. Our holistic approach
to software security combines best-in-breed products, industry-leading experts,
and a broad portfolio of managed and professional services that work together
to improve the accuracy of findings, speed up the delivery of results, and
provide solutions for addressing unique application security challenges. We
don’t stop when the test is over. Our experts also provide remediation guidance,
program design services, and training that empower you to build and maintain
secure software.

For more information go to www.synopsys.com/software

185 Berry Street, Suite 6500
San Francisco, CA 94107 USA

U.S. Sales: (800) 873-8193
International Sales: +1 (415) 321-5237
Email: software-integrity-sales@synopsys.com

https://www.synopsys.com
https://twitter.com/synopsys
www.linkedin.com/company-beta/2457/?pathWildcard=2457
https://www.facebook.com/Synopsys/
https://www.youtube.com/user/synopsys
https://www.synopsys.com/software

